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We constructed and calibrated an instrument targeting conceptual and procedural 

fraction knowledge. We used this instrument in a quantitative study with 126 secon-

dary students (7th and 9th graders), testing the hypothesis that there are individual dif-

ferences in the way students combine the two types of knowledge. Cluster analysis 

revealed four distinct student profiles: Students who were either stronger or weaker 

than expected with respect to both types of knowledge; students who were stronger 

with respect to conceptual knowledge; and students who were stronger with respect to 

procedural knowledge. These findings support the individual differences hypothesis.  

THEORETICAL BACKGROUND  

Procedural knowledge typically refers to the ability to execute action sequences to 

solve problems and is usually tied to specific problem types, whereas conceptual 

knowledge is defined as the knowledge of concepts and principles pertaining to a 

domain (Rittle-Johnson, Siegler, & Alibali, 2001; but see also Star (2005) for a plea to 

reconsider how procedural knowledge is conceptualized). Research in the area high-

lights the fact that conceptual and procedural mathematical knowledge (hereafter, CKn 

and PKn) are equally important for mathematical competence (Rittle-Johnson & 

Schneider, 2015), yet mathematics education wavers between giving precedence to 

one or the other type of knowledge (Moss & Case, 1999; Star, 2005). As a conse-

quence, the issue of procedural and conceptual knowledge in mathematics learning is 

not only theoretically interesting, but also educationally relevant. 

There has been a lot of discussion regarding which type of knowledge develops first. 

Procedures-first theories assume that children first learn procedures for solving prob-

lems in a domain and then derive domain CKn from their experience solving problems. 

Concept-first theories support that students initially acquire CKn and then build PKn 

through repeated practice (Rittle-Johnson et al., 2001). Noting that, regardless of 

which type of knowledge comes first, the relation between CKn and PKn is typically 

bi-directional, Rittle-Johnson and colleagues (2001) argued for an iterative model, 

according to which the two types of knowledge develop in a hand-over-hand process 

and gains in one type of knowledge lead to improvements in the other, which in turn 

increases the first type of knowledge. 
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However, the relations between CKn and PKn remain a complex issue: For example, 

increases in one type of knowledge do not always result in equal amount of increase in 

the other; moreover, it appears that there are individual differences in the way students 

combine the two types of knowledge (Rittle-Johnson & Schneider, 2015). Hallett and 

colleagues (Hallett, Bryant, & Nunes, 2010; Hallett, Nunes, Bryant and Thrope, 2012) 

investigated such individual differences in students’ fraction knowledge. They as-

sessed CKn and PKn of students at Grade 4 and 5 (2010) as well as at Grade 6 and 8 

(2012) and identified groups of students who had strong (or weak) CKn as well as PKn. 

However, they also consistently traced two substantial groups of students who 

demonstrated relative strength with one form of knowledge and weakness with the 

other, with differences between the two types of knowledge becoming less salient with 

age.  

In an in-depth qualitative study, we found, similarly to Hallett and colleagues (2010, 

2012), individual differences in the extent to which 9th graders rely on CKn and PKn in 

the area of fractions (Bempeni & Vamvakoussi, 2015). More specifically, we found 

students who displayed flawless procedural performance but failed even in the sim-

plest of tasks that required conceptual understanding of fractions, and vice versa.  Such 

findings are theoretically interesting because they challenge the view that all children 

follow a uniform sequence in gaining the two types of knowledge (see also Canobi, 

2004) and illustrate the possibility that CKn and PKn may not develop in a 

hand-over-hand manner, putting a challenge to the Rittle-Johnson et al.’s iterative 

model (2001). Moreover, tracing salient individual differences at grade 9 could indi-

cate that individual differences may persist, despite the general tendency to diminish 

overtime (Hallett et al., 2010; 2012). 

An issue that needs to be addressed in this research area is the fact that very little at-

tention has been given to measurement validity. As Rittle-Johnson & Schneider (2015, 

p. 1128) noted: 

However, before more progress can be made in understanding the relations between con-

ceptual and procedural knowledge, we must pay more attention to the validity of measures 

of conceptual and procedural knowledge. Currently, no standardized approaches for as-

sessing conceptual and procedural knowledge with proven validity, reliability, and objec-

tivity have been developed. 

To further investigate this issue, we constructed and calibrated a new instrument 

measuring CKn and PKn of fractions. We administered this instrument to secondary 

students testing the hypothesis that there are individual differences in the way students 

combine CKn and PKn that remain salient at the secondary level. 

METHOD 

Research instrument 

The research instrument—in its final form after the evaluation (see Instrument Eva-

luation below)—comprised 26 fraction tasks grouped in two categories, procedural 
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(12) and conceptual (14) tasks. The procedural tasks were paper-and-pencil tasks re-

quiring knowledge of procedures taught at school (e.g., to execute fractions operations, 

to find an equivalent fraction, to cross-multiply, to simplify a complex fraction, and to 

compare dissimilar fractions).  

The conceptual tasks were based on our materials from previous studies (Bempeni & 

Vamvakoussi, 2015) as well as on other instruments assessing conceptual under-

standing of fractions (e.g., Van Hoof, Verschaffel, & Van Dooren, 2015) and targeted 

many important aspects of fraction CKn. For example, students were asked to interpret 

and evaluate fraction representations with area models as well as the number line; to 

mentally compare fractions; to estimate the outcome of fraction operations; and to 

select appropriate fraction operations to solve problems. 

The conceptual tasks were posed in the form of multiple choice questions in order to 

ensure that students would not use paper-and-pencil. Τhis is because some conceptual 

tasks could be tackled with procedural strategies (e.g., the comparison of fractions), in 

which case students’ PKn rather than their CKn would be assessed (see also Rit-

tle-Johnson & Schneider, 2015). 

Participants 

The participants of the study were 126 Greek students: 66 seventh graders and 60 ninth 

graders. 

Procedure 

The same questionnaire was issued in two versions (A and B), varying the order of 

presentation of the conceptual tasks so as to prevent students from cheating. The stu-

dents had fifty minutes to solve the fractions tasks. 

DATA ANALYSIS AND RESULTS 

The responses of the tasks were coded as correct or wrong. For the data analysis we 

used the Statistical Package for the Social Sciences (SPSS) and the R Project for Sta-

tistical Computing. 

Instrument Evaluation 

We conducted a clinical pilot with 61 students in order to evaluate the reliability and 

the validity of our instrument. The instrument, in its initial form, included 39 fraction 

tasks (12 procedural and 27 conceptual tasks).  

The instrument showed strong face validity given that all tasks were assessed as clear, 

reasonable and accurate by 6 mathematics education experts. The experts were also 

asked to rate the relevance of each item to the aim of the instrument, on a 4-point scale. 

The calculation of the content validity index (CVI=1>0.83) for each item confirmed 

the high consistency between experts (Polit, Beck, & Owen, 2007). Moreover, multi-

trait analysis illustrated that all the items of the PKn scale showed convergent validity 

and divergent validity by demonstrating high correlation with the procedural scale and 

low correlation with the conceptual scale respectively. More specifically, the value of 

http://www.statisticshowto.com/probability-and-statistics/correlation-coefficient-formula/
http://www.statisticshowto.com/probability-and-statistics/correlation-coefficient-formula/
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correlation for all procedural items was above 0.7. Eight items of the CKn scale 

showed low correlation with conceptual tasks or higher than expected correlation with 

PKn tasks, possibly due to their great diversity (see also Hallett et al., 2012). We de-

cided to exclude these items from subsequent analyses. 

To establish whether the items on this questionnaire all reliably measure the same 

construct we calculated Cronbach's alpha. The instrument showed a high degree of 

internal consistency (0.921 and 0.731 for the PKn and CKn measure, respectively). We 

also calculated Cronbach’s alpha for CKn and PKn scales in case we removed a par-

ticular task. In all cases the value of Cronbach’s alpha was less than 0.921 and 0.731 

for the PKn and CKn scales respectively and as a result there was no reason to delete 

any of the items (Cronbach, 1951). We also assessed the external consistency of the 

instrument over a period of three weeks with a test-retest method. The value of in-

tra-class correlation coefficient was high for all the PKn tasks (r>0.8). However, this 

was not the case for all the CKn tasks. Five of them presented intra-class correlation 

coefficient below 0.5. We thus decided to remove them from the final form of our 

instrument (Ware & Gandek, 1998).  

Main study 

Our data were analyzed using cluster analysis. Following Hallett et al. (2010), we used 

the residualized scores of PKn and CKn in our analysis, the raw scores being the 

percentages of correct answers out of the total of answered questions. This is because 

the two scales (CKn and PKn) are expected to be correlated, and the use of residualized 

scores provides a way of measuring CKn and PKn that excludes this common part of 

variation from both scales (Cohen, Cohen, West, & Aiken, 2003). The residualized 

scores were obtained using linear regression. More specifically, residuals for CKn 

were obtained by regressing conceptual knowledge against procedural knowledge, 

while the residuals for PKn were obtained by regressing PKn against CKn. The re-

sidualized scores represent relative, rather than absolute, strength with respect to PKn 

and CKn, in the sense that a positive residual, for instance in PKn, means that a per-

son’s PKn is stronger than expected given their CKn.  

In order to identify different profiles of individual differences a cluster analysis was 

performed based on the two residualized scales using the k-means method and Eu-

clidean distance as a distance measure. In the literature, a wide variety of indices have 

been proposed to find the optimal number of clusters in a partitioning of a data set 

during the clustering process. In order to determine the optimal number of clusters at 

our dataset we used the R package NbClust which provides 26 indices (Brock, Pihur, 

Datta, & Datta, 2008). The majority of these indices suggested a four cluster solution. 

The mean (and standard deviation) of the conceptual and procedural scores for the 

students of the four clusters are presented in Table 1. Table 1 also presents the mean 

and standard deviation for raw and residualized scores by cluster. The first cluster 

Stronger than expected in CKn (N=21, 16.7%) is characterized by positive CKn re-

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225691/#R12


Bempeni, Poulopoulou, Tsiplaki, & Vamvakoussi 

 

PME 42 – 2018 2 – 151 

siduals and negative PKn residuals which means that students in this cluster performed 

better than expected in CKn tasks, given their performance in PKn tasks. 

 

Cluster 1 

Stronger than 

expected in 

CKn 

Cluster 2 

Stronger than 

expected in 

PKn and CKn 

Cluster 3 

Stronger than 

expected in 

PKn 

Cluster 4 

Weaker than 

expected in 

PKn and CKn 

 

Mean SD Mean SD Mean SD Mean SD 

Procedural 

Residual -1,4 0,4 0,4 0,2 0,8 0,4 -0,7 0,4 <.0001 

Conceptual 

Residual 0,8 0,5 1,3 0,8 -0,7 0,4 -0,3 0,3 <.0001 

Procedural 

Score 10,3 12,8 85,9 10,4 70,1 16,6 19,6 14,8 <.0001 

Conceptual 

Score 30,9 8,5 54,5 14,2 17,5 8,3 13,3 6,3 <.0001 

Table 1: Mean and standard deviation for raw and residualized scores by cluster 

The second cluster Stronger than expected in PKn and CKn (N=22, 17.5%) and fourth 

cluster Weaker than expected in PKn and CKn (N=31, 24.6%) cluster comprised stu-

dents with either good or poor performance, respectively, in both measures. The third 

cluster Stronger than expected in PKn (N=52, 41.3%) is characterized by negative 

CKn residuals and positive PKn residuals which means that students in this cluster 

performed better than expected in PKn tasks, given their performance in CKn tasks. 

We present the cases of two students illustrating extreme individual differences re-

garding PKn and CKn. The student of the Stronger than expected in PKn profile 

achieved 100% score in procedural tasks but only 14.29% in conceptual tasks, failing 

even in the simplest ones (e.g.:area model, Figure 2).  

  

Figure 1: Αn extreme case in the Stronger in PKn cluster 
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On the other hand, the student of the CKn profile failed in all PKn tasks and responded 

correctly in 50% of the CKn tasks. Figure 2 illustrates the fact that this particular 

student was able to estimate a sum of fractions, despite the fact that she had failed to 

perform fraction addition.   

  

Figure 2: An extreme case in the Stronger in CKn cluster  

The chi-square test of independence showed that there were no significant differences 

in the distribution of the two age groups among the clusters (χ2 = 0.31, df = 3, p-value = 

0.96). The distribution of cluster membership across grade is presented in Table 2. The 

mean raw scores of the two age groups in CKn & PKn tasks are presented in Figure 3. 

Grade 

Cluster 1 

Stronger than 

expected in CKn 

Cluster 2 

Stronger than 

expected in PKn 

and CKn 

Cluster 3 

Stronger than 

expected in PKn 

Cluster 4 

Weaker than 

expected in PKn 

and CKn 

Seven 10 12 27 17 

Nine 11 10 25 14 

Total 21 22 52 31 

Table 2: Distribution of clusters across grade 

 

Figure 3: Mean raw scores of the two age groups 

https://www.google.gr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=0ahUKEwjnlK_onJLYAhXQJ-wKHZ2RANEQFghvMAc&url=http%3A%2F%2Fstattrek.com%2Fchi-square-test%2Findependence.aspx&usg=AOvVaw3xNnFOzv3tzJTc6zDy8NC7
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CONCLUSIONS-DISCUSSION 

In response to the need for valid and reliable measures of conceptual and procedural 

mathematical knowledge, we constructed and calibrated an instrument targeting con-

ceptual and procedural fraction knowledge. The instrument we developed demon-

strated good indicators of validity and reliability and thus can be characterized as an 

efficient instrument for fraction CKn and PKn. 

This instrument was used in a study testing the hypothesis that there are individual 

differences in the way that students combine CKn and PKn of fractions that remain 

salient at the secondary level. The results supported this hypothesis. We point out that 

43.2% of our sample belonged to the Stronger than expected in CKn and Stronger than 

expected in in PKn clusters. This hypothesis is further corroborated by the fact that the 

student profiles obtained in our study were very similar to Hallett and colleagues’ 

(2010, 2012), despite the fact that a different instrument was used, in a different pop-

ulation (Greek students), and for older students (9th graders). In contrast to Hallett et al. 

(2012), our findings showed that individual differences in CKn and PKn do not nec-

essarily diminish over time and may even be extreme, as indicated by the examples 

presented above. 

Our findings also indicated that only few students adequately combine CKn and PKn. 

Given that developing both CKn and PKn is critical for mathematical development, it 

is important that teaching strategies and techniques that support both types of know-

ledge are used in instruction (see Rittle-Johnson & Schneider, 2015, for a review). We 

note that the third cluster Stronger than expected in PKn comprised the greater part of 

our sample, suggesting that more attention should be paid to conceptual knowledge 

during instruction. Moreover, despite the fact that we expected school experience to 

lead to improvements in students’ fraction knowledge, we did not find any significant 

differences in the distribution of the two age groups across the clusters. 

Further, the validation of such individual differences showcases the importance of 

differential instruction, based on the students’ needs. Students who belong to different 

profiles could gain from different instructional approaches that make good use of the 

CKn and PKn that students have (Gilmore & Bryant, 2006).  

Finally, the instrument we constructed and calibrated can be used for the assessment of 

students’ understanding of fractions and of the lack in CKn and PKn so as to differ-

entiate appropriately mathematics instruction. 
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